1. 高三 > 正文

三角函数必背公式有什么,性质是怎样的

在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA。即sinA=∠A的对边/斜边。在Rt△ABC(直角三角形)中,∠C=90°,,∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。(文章内容来源于网络,仅供参考)

三角函数必背公式

1、设α为任意角,终边相同的角的同一三角函数的值相等

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

2、设α为任意角,π+α的三角函数值与α的三角函数值之间的关系

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

3、任意角α与-α的三角函数值之间的关系

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

4、利用公式二和公式三可以得到π-α与α的三角函数值之间的关系

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

5、诱导公式

sin(-α)=-sinα

cos(-α)=cosα

tan(—a)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

sin(π-α)=sinα

cos(π-α)=-cosα

sin(π+α)=-sinα

cos(π+α)=-cosα

tanA=sinA/cosA

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

tan(π-α)=-tanα

tan(π+α)=tanα

6、和差化积公式

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)

2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

tanA-tanB=sin(A-B)/cosAcosB

三角函数的性质

三角函数性质是:如果一个函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的最小正周期。例如,正弦函数的最小正周期是2π。

对于正弦函数y=sinx,自变量x只要并且至少增加到x+2π时,函数值才能重复取得。正弦函数和余弦函数的最小正周期是2π。

相关推荐

联系我们

联系QQ

在线咨询:点击这里给我发消息

邮件:

工作日:

QR code