生活,互联网中文知识库

生活,互联网中文知识库

高三 > 正文

二重积分的对称性

来源:高三 www.yangji120.com/life/ 发布时间:2023-03-09

二重积分的对称性主要是看被积函数与积分区域两个因素,若有对称性,则积分区域必定关于原点对称,二重积分也有奇偶性,但是有差别,要看积分区域对平面的对称性。

二重积分的奇偶对称性是什么

二重积分的奇偶对称性是被积函数与积分区域两个因素。对称性计算二重积分时要看被积函数或被积函数的一部分是否关於某个座标对称,积分区间是否对称,如果可以就可以用对称性,只用积分一半再乘以2。

二重积分的奇偶对称性特点:

奇偶性计算二重积分时要看被积函数或被积函数的一部分是否具有奇偶性,积分区间是否对称,如果奇函数则积分为0为偶函数则用对称性,二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限,本质是求曲顶柱体体积。

重积分有着广泛的应用,可以用来计算曲面的面积平面薄片重心等,平面区域的二重积分可以推广为在高维空间中的有向曲面上进行积分称为曲面积分,同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心平面薄片转动惯量,平面薄片对质点的引力等等。

二重积分的几何意义

二重积分的几何意义是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。

平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。

某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。

上一篇:cvr是什么意思

相关推荐

体积分数的计算公式是什么,怎么计算的

体积分数的计算公式为:体积分数 = 混合气体中某物质的体积 / 混合气体的体积 × 100%。体积分数是表示混合物中某一组分的体积占总体积的比例,常用于气体混合物或溶液中溶质的浓度表示。对于气体混合物,体积分数可以...

2024-10-29

微积分的作用及意义

微积分的基础极大地促进了数学的发展,许多初等数学无法解决的问题都是通过微积分来解决的。这些问题往往是用刀刃来解决的,显示出非凡的计算能力,是数学中的一门基础学科。 微积分有什么作用及意义 微积分的基础极大...

2023-03-06

变上限积分求导公式,怎么计算的

变上限积分求导公式:也就是∫f(t)dt(积分限a到x),按照映射的规律,每给一个x就积分出一个实数,所以这是关于x的一元函数,记为g(x)=∫f(t)dt(积分限a到x),注意:积分变量无论用任何符号都不对积分值产生影响,改用t...

2022-12-08

两个重要极限的公式是什么,有什么内涵

极限是微积分中的基础概念,它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的值(极限值)。在现代的数学分析教科书中,几乎所有基本概念(连续、微分、积分)都是建立在极限概念的基础...

2022-11-23

菱形的对称性

菱形是轴对称图形,也是中心对称图形。菱形的基本性质:1、菱形具有平行四边形的一切性质;2、菱形的四条边都相等;3、菱形的对角线互相垂直平分且平分每一组对角;4、菱形是轴对称图形,对称轴有2条,即两条对角线所在直...

2022-11-15

不定积分24个基本公式,性质是什么

在求一个函数不定积分的时候只要找到这个函数的一个原函数,用这个原函数加上任意常数C就得到这个函数的全体原函数,也就得到它的不定积分。公式包括∫x^ndx=x^(n+1)/(n+1) +C, 其中n≠-1;∫x/(a+bx)dx=(bx-aln|a+bx|)/...

2022-11-01

不定积分三角代换公式有哪些,代换条件是怎样的

不定积分三角代换公式是x=a*sint。在微积分中一个函数f的不定积分或原函数或反导数,是一个导数等于f的函数F,即F′=f。不定积分和定积分间的关系由微积分基本定理确定,其中F是f的不定积分。(文章内容来源于网络,仅供...

2022-10-30

不定积分公式大全,怎样求解

不定积分24个基本公式有:∫x^udx=(x^(u+1))/(u+1)+c、∫1/xdx=ln|x|+c、∫a^xdx=(a^x)/lna+c等内容,不定积分是微分的逆运算。(文章内容来源于网络,仅供参考) 不定积分公式大全 不定积分24个基本公式有:∫x^udx=(x^(...

2022-10-30

高一地理必修二重要知识点整理

高一地理是整个高中地理学习的比较简单的阶段,对知识点的学习要重点关注课本,对书本上的知识点要学会总结记忆,打下稳固的基础,对之后的高中地理学习是非常有帮助的,下面是小编的整理,有需要的同学可以参考。 高一...

2022-10-08
点击查看 高三 更多内容
都在关注