1. 高三 > 正文

arctan1/x的导数

arctan1/x的导数是-1/(1+x^2)。推导过程:[arctan(1/x)]'=1/[1+(1/x)^2]*(1/x)'=[x^2/(1+x^2)]*(-1/x^2)=-1/(1+x^2)

arctanx等于什么

arctanx=1/(1+x2)。anx是正切函数,其定义域是{x|x≠(π/2)+kπ,k∈Z},值域是R。arctanx是反正切函数,其定义域是R,反正切函数的值域为(-π/2,π/2)。

推导过程:

设x=tant,则t=arctanx,两边求微分

dx=[(cos2t+sin2t)/(cos2x)]dt

dx=(1/cos2t)dt

dt/dx=cos2t

dt/dx=1/(1+tan2t)

因为x=tant

所以上式t'=1/(1+x2)

反函数求导法则

设原函数为y=f(x),则其反函数在y点的导数与f'(x)互为倒数(即原函数,前提要f'(x)存在且不为0)。

推导过程:

设y=f(x),其反函数为x=g(y)

可以得到微分关系式:dy=(df/dx)dx,dx=(dg/dy)dy

那么,由导数和微分的关系我们得到

原函数的导数是df/dx=dy/dx

反函数的导数是dg/dy=dx/dy

所以,可以得到df/dx=1/(dg/dx)

相关推荐

联系我们

联系QQ

在线咨询:点击这里给我发消息

邮件:

工作日:

QR code